
EXACT SOLUTIONS OF SOME PROBLEUS COESCERNED WITH OSCILLATIONS 

OF FWID CONTAINED IN AN ELASTIC MOMENTLESS SHELL 

PMM Vol. 35. No. 4, pp. 739-744 
G. I. PSHENICHNOV 

(Moscow) 
(Received 5th November 1970) 

This paper presents a study of small, steady free oscillations of a system consist- 

ing of an elastic shell filled with an ideal incompressible fluid. 

To describe the motion of the shell differential equations of the momentless 

[membrane] theory are used. The applicability of this theory for computing of 
frequencies which are not too high and of the modes of oscillation was already 

established in [l]. The motion of the fluid is taken as potential one. 
Exact solutions of the problems of free oscillations for the following types of 

shell fully filled with fluid were obtained: . a cylmdrical shell with one or two 
rigid ends, a closed spherical, and a half-spherical one. 

1. Equations of motion of the cylindrical shell are 

[ 
“-+++_ 

892 
(l-;)Pp $J’+~L_6z&o 

a9drp 

i + 6 c%l __+[++_++ (‘-;)P112 2&_+9 
2 d0dcp (i.lj 

au 
-e%-- acp 

av + b + J=;E&] w + (I ,;;; x2 (p)_ = 0 

where apart from the usual symbols;% is the thickness of the shell, p is the density of 
material, (p)+i is the hydrodynamic pressure of the fluid on the sides of the shell. 

1. Let us consider the free oscillations of the cylindrical shell with a rigid bottom, 
fully filled with fluid. 

The volume of fluid contained in the cylindrical system of coordinates is limited by 

the surface of the shell t = 1 and the bottoms0 = 0, 0 = 2111 R(where R and 2H res- 
pectively,are the radius and length of the shell). 

The potential of the velocities of particles of fluid, satisfying the Laplace equation 

and the condition of regularity in the fluid can be written as 

u, nm = Anml, (vmE) co9 v, 0 cos n ‘p sin ~,,t (R = 0,1,2,<. . .) (1.2) 

where I, (~1 is a cylindrical function of an imaginary argument. 

-9, = mnR / 2H (m = 1, 2, 3, . ..) 

we can satisfy the condition of rigid, fixed bottoms 

acr, / ae = 0 for 0~0, O=2HIR 

The hydrodynamic pressure of fluid, entering (1.1) is determined by formula 

(1.3) 
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(P)+, = - P+ Pwv,,~ (1.4) 

where p,, is the density of the fluid. 
The condition of equal velocities of particles of the fluid and of the shell in the dire- 

ction of the normal to its middle surface leads to (1.5). where the positive value of u: 

corresponds to displacement in the direction of the internal normal 

R (aw I at) f (dcD / a;),=, = 0 (1.5) 

The system (1. l), bearing in mind (1.2). (1.4) and (1.5), admits exact solution 

S = ,,l?I ctA sin vme cos ng, cos O,,f 

V = C(?) cos v Osinnq’caso t ,Lnl IIrn m nm. (1.6) 

W = c@) cos v ecosncpcoso t 
nm nm m nm 

The constants in (1.2) and (1.6) can be determined up to an arbitrary multiple C,, by 
formulas 

c;;A = [GV’, - n2 - 2s (I-+- G) A;,] vm cnm 

Cc:) = 
nm In* + (2 + a) vf - 2 (1 + G) A;,] nc,, (1.7) 

CzA = [(v& -i- .‘)’ + 2 (i + G)(i -G”) A”,, - (i + G) (3 - G)(V& + n2) hZ,,] c,,, 

[ ‘rn’n-1 (V,) - d, (Vm)] Anrn = [(I”, -j- n*)’ + 2 (i + G)(i - G:) hJ,m - 

-(I + G) (3- G)(v;T n') irim] Ru,,~C,,,, 

The dimensionless parameter of the frequency of oscillation AL,, = pH%.$,,,/B is dete- 

rmined by equation 

[v,,I,-1 (v,) -nI,(V,)){v~--q(i+G)(1-G~) h;,+2(1+G)[i+(3--G)X 

X (v; + n?)] i$,- [II: + (3+ 25)vL + (v: + na)2]hzm) c- I, (v,) [(v’, + n?)? + 

+2(i+s)(i-Ga)him-(1-i-G) (3-G)(v&fna)h~,]h2,,=0 (1.8) 

c, . where t = -,i p / G*;:. The momentless boundary conditions for the shell corresponding 

to (1.6) are 
U r- s, = 0 for 0 z 0. 8 zz 211 / R 

where S, is the shear force in the transverse cross section of the shell. Neglecting the 
inertia forces of the shell, we have A,,,, = 0 (lo,,, # 0) in (1.7) and the frequency equ- 

ation (1.8) becomes 

t ~,1,_1 (\,,,,I - rtl,, (v,)l c1.A - h;,,,~, (tlrn) tv’, + q = 0 (1.9) 

For fixed II and nr Eq. (1.8) gives three values for A,.,,,” ; however, two of them must 
be neglected, because they are far too great (the hypothesis of incompressibility of the 
fluid and momentless theory of the shell would become unjustified). 

We see that the modes of oscillation (1.6) for the even values of m are symmetrical 
and for the odd values are anti-symmetrical relative to the mean section tJ = If / li. 

2. Let us now consider the free oscillations of the cylindrical shell fully filled with 
fluid, but with only one rigid bottom. The length of the shell is H,acceleration of the 
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gravity field is F and is directed opposite to the axis 6. It is obvious that the above sol- 
ution also satisfies this case if in (1.3) we accept only the odd values of m. Boundary 
conditions for 6 = Oremain the same as in the previous problem. The conditions rela- 
ted to the other section are:- 

v=T,=p=O, for 6 = H / R 

where Tr is the longitudinal force in the cross section of the shell. 
If the problem is solved for the condition 

R (&I) / 812) + 6 (SD / 89) = 0 for 6 = If I R (1.10) 

which is more severe than (P),+,~,~ = 0, we get the relation 

G, i- bv, t,g (v,H/ R) = 0 (1.11) 

which permits, using (1. 8), to determine v,,, and h “,,, 2. Here4 = p:X / E.For construct- 
ions which are met in usual practice we find a strong inequality8 < i.2.Then from (1.11) 
we can find that v,with a great degree of accuracy is identical with (1.3) for odd val- 
ues of nl and therefore the different conditions quoted for the free surface of fluid prod- 

uce practically the same results. 

For realization of the nontangential boundary conditions, attached to function u* and 
its derivatives, we have to add to the momentless solution the solutions with great vari- 
ability, which have the character of a boundary effect Cl]. 

In many studies concerned with free oscillations of elastic shells with fluid, the forces 
of inertia of the shell are disregarded. In the problem under consideration, connected 

with this assumption, the error can be easily evalu- 

ated by comparing the frequencies obtained by (1.8) 

and (1.9). Frequencies found by (1.9), as should be 
expected, are too large and the value of the error 

increases with the frequency and substantially depe- 

nds on the values c andIf i Il. In Fig. 1 this relation 
for II == Ois given for the first two frequencies of the 
oscillation (no = 1 and 3). The axis of the ordinates 

corresponds to the percentage error in determining 
Fig. 1. Ira by (1.9) instead of (1.8). It was assumed that 

u = 11.3. 

In the case of axially symmetrical free oscillations (n = 0)this problem was solved 

numerically with the help of an electronic computer. The thickness of the wall of the 
cylindrical shell was taken as a linear function of the coordinate 0. It was found that 

the variation of constants Q and b in the boundary case is 

au + bT, = 0 for 6 = II I R (1.12) 

and on the spectrum of frequencies this was apparent only when the forces of inertia of 

the shell play a substantial part. Therefore, if the difference of frequencies of free 
oscillations, evaluated by (1.8) and (1.9) is small, the solution obtained can be consi- 

dered to be a sufficiently close approximation for the solution of the free oscillations 
of the shell with boundary conditions (1.12) and for any values of the constants n and 

b (e. g. for partial filling of the cylindrical shell to a depth of H). 

This problem admits yet another class of solutions. Let us take the potential of vel- 
ocities of the particles of fluid as 
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rp nm = AnmJn (tnmf) ch %.,&I cos nv sin w,& 

where J, (z) is Bessel’s function of real argument. In this form a,,,, is a regular funct- 
ion of the volume of fluid with a rigid bottom and9 = O.Then instead of (1.9) and (1.11) 
we obtain 

(2Eh I P&Pa) IXn7nJn-r (xnm) - nJ, (%Tlt)l x&&- (a* - ?&&)a Jn (xnm) th OcnmH / R) f= 0 
(1.13) 

0s ,,,,, = (g%, I R) th (+,,H I R) 
ff we assume 

we will find 

A 
rsnm R (x”,, - nap 

nm = qmJn-x (sm) - n& OhmI cnm (1.14) 

xi nn. = (n’f G%:,> x,,,Cnm sh x,&l cos ng, cos o,t 

0 nm - - In2 - (2 + 6) Xi,] nC,, ch q&3 sin ncp cos an,& (1.15) 

W nm - - (n2 - %;,)a c,, ch %m0 co9 ncp cos Onrnt 

Usually 2Eh f p*gBa >> l.Fhen from (1.13) we conclude that the values x,, are approx- 
imately equal to the roots of the equation 

Jn-1 b) - 
dJn (4 -&Jn(z)=~=O 

which is identical with a known equation dealing with the free oscillation of fluid in a 
rigid cylindrical vessel &j, Let us note that in this case and in agreement with (1.14) 
and (1.15) the velocities of the shell would be considered significantly smaller than the 
velocities of the particles of fluid. 

2, Let us attempt now the probIem of free oscillation of an elastic spherical shell. 
fully filled with fluid. 

Equations of motion of the shell, with the usual symbols, have the form 
d 1 
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1. Let the closed shell be free of any fixation and fully filled with fluid and perform 

its steady oscillations. The potential of the fluid in the spherical system of coordinates 

is taken as 
(I, - 13,,,cmPmn (cos 0) cos ncp sin o,mt nm - (n=O,i,Z,...) (2.2) 

where P,,,” (r)are the associated functions of Legendre’s polynomials. Then the solution 
of system (2.1). bearing in mind (1.4) and (1. S), is 
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u,, = (I+ B) c,, dPm;(y e, cos ncp cos onm t 

V nm = - (I+ 0) nC,, pm~i~~ ‘) sin ncp co9 on& 

w,m = [I - u - m (m + 1) + (1 - a%&]CnmPm” (co9 6) co9 nq co9 mnmt 

where m = n + k (% = 0, 1, 2, . ..). For this the parameter of frequency is determined 

by the equation 

(i- e2) (1 + cm) &A, - [m* + m--l+a+ (m~+m+1+35)cm]l.~,+(m*+m-2)X 

Xcm=O (2.4) 

The constant in (2.2) was taken as 

B nm=& - m (m + I)+ (I- +) J&J Rw,,C, I m 

In the case when the forces of inertia of the shell are disregarded, we get 

Aim = 
[m(m+i)-22]cm 
m (m + I) - (1 - 6) (2.5) 

One of the values of Ai,, which is obtained from (2.4) will be too great and should be 

rejected on the grounds shown in Sect. 1. 
If we neglect the inertia of the shell and take a sufficiently large value of c we can 

get excessive values of frequency. and with increase of the frequency of free oscillation 
this error becomes greater. Thus, in the case whenc = 0.078,the parameter of frequency 

A*, calculated according to (2.5) for m = 3, 5, 7, 9, becomes&spectivel& greater by 

27,41,57, and 71 %than its value determined by the quadratic equation (2.4). 
If parities of n and m coincide, the modes of free oscillations are symmetrical with 

respect to the equatorial section of the system0 = n i 2.0therwise they will be antisy- 

mmetric with respect to this section. The case of m = i corresponds to displacement 

of the system as a rigid body (71. = U). 
In paper [3] the problem of axisymmetrical oscillations is considered (n = 0) for an 

elastic closed spherical shell, partly filled with ideal incompressible fluid. Along the 

equator the shell is fixed against tangential displacements (u = 0) and inertia is disreg- 

arded. A separate case is considered when the shell is fully filled with fluid. In this 

latter case and in the case of the closed spherical shell without fixation with oscillati- 

ons symmetrical relative to the equatorial section the solutions must be identical. This 
is confirmed by comparison of our results (disregarding the forces of inertia of the shell) 

with the results of paper [S]. 
2. The solution obtained. for the closed spherical shell with antisymmetrical oscill- 

ations is also the solution for the problem of free oscillations of the half-spherical shell, 

fully filled with fluid with the boundary conditions 

v=T,,p,O for 8 = x I 2 

If the last of these conditions is replaced by 

R (0 / 012) + g (a0 / 30) = 0 for 0 = n / 2 

we obtain 
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which together with (2.4) allows determination of the value 111 and &,” (mis not an 

integer andP,,,” (z)is the associated function of Legendre). For S < J.2 approximate 
values of m arem = n + k (k = 1, 3, 5,.)and therefore the application of the two differ- 

ent kinds of conditions to the free surface of fluid gives practically the same results. 
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Microheterogeneous media (composite materials, polycrystals and others) are 

examined for which the elastic moduli tensor c” t,mnis considered a homogeneous 

random function of coordinates. The question of the relation between mathem- 
atical expectations of stresses (ctj> and strains <Eij) in such media was studied 

by a number of authors [l-5] under the condition that the fields of stresses and 
strains are statistically homogeneous. The author of [6] examined the case of 

inhomogeneous fields and proposed a method of solution for the inhomogeneous 
stochastic problem. In this paper the program outlined in [6] is carried out. 

In Sect. 1 the initial stochastic inhomogeneous problem is reduced to an infr 

inite sequence of homogeneous problems. This is achieved through the repres- 
entation of the solution in the form of a series which satisfies the equilibrium 
equations for a volume element of the body, and the equations of compatibility 
of deformations. The coefficients of this series are homogeneous random tensor 
functions which are independent of body form and also independent of the det- 

ermined external load acting on the body. These tensor functions depend only 
on the elastic properties of the body and are completely determined through the 
given random tensor c;j,,. 

In Sect. 2 the coefficients of the above mentioned series are expressed in terms 


